Hnojiva JUNGLE indabox jsou koncipována na pomezí biominerálních a organických hnojiv. Vysoce čistý základ z přírodních ložisek v Chile je doplněn komplexem synergicky působících přírodních látek. Díky této koncepci nejsou na rozdíl od hnojiv čistě organických zatížena negativními vlivy na zdroje živin v potravinovém řetězci.
Vedle základních biogenních molekul jako je H2O a CO2, které jsou zdrojem C, O, H musí mít rostlina k dispozici další biogenní prvky, které se stávají živinami (až na určité vyjímky) převážně v iontové formě.Iontová forma vzniká rozpouštěním (disociací),např horniny - odtud pěkný český název "živce". Živinami pak označujeme takové prvky, které živý organismus potřebuje k zajištění svých životních funkcí. Je-li tento prvek alespoň jednou v ontogenetickém cyklu rostliny nezbytnou živinou, pak je jednoznačně biogenní povahy. Z praktického hlediska však není možné provádět tak úzkou specifikaci, a proto se běžně biologicky nejdůležitější prvky mohou rozdělit do skupin:
Makroprvky: (obsah od desetin po desítky procent)
C,O,H (přijímány rostlinou ze vzduchu) N,P,S (přijímány jako anionty) K,Ca,Mg (přijímány jako kationty) Mikroprvky:(obsah pod desetinu procenta) Fe,Mn,Zn,Cu,Na (přijímány jako kationty) Cl,B,Mo (přijímány jako anionty) Za optimální formu živiny považujeme takovou, která je kořenovým systémem (a pokud možno i na list) přijímána přímo a rostlina nemusí vynakládat již žádnou energii na její chemickou přeměnu, jak je zjednodušeně znázorněno na obrázku.
|
prvek | přijímán ve formě | úloha v rostlině |
|
Mobilní prvky - nedostatek se projeví na spodních (starých) listech. | |||
N (dusík) | NO3-,NH4+ | Ten je úplně na všechno ...:-)Ve vlhkých,teplých a dobře provzdušněných půdách,které chceme při pěstování co nejlépe napodobit, převládá forma NO3-.V rostlině jsou nitráty redukovány(především ve stonku) na NH4+pomocí energie z fotosyntézy.V její temnostní fázi je spotřeba glukózy na syntézu proteinů o 50% vyšší v případě,že je dusík přijímán jako NO3 než jako NH4.Proto část dusíku dodáváme v rychle dostupné formě NH4+.NH4dusík je též produkován při reakcích org.sloučenin např.glutamátu při produkci glutaminamidu,asparaginu a aminokyselin asparagové a glutamové.Aminokyselin je syntetizováno v rostlině přes 100,z nich okolo 20je využito k syntéze proteinů (dle genet. výbavy).Funkční proteiny(na rozdíl od stavebních)jsou neustále degradovány a resyntetizovány-enzymy.Dále je dusík součástí DNA,RNA,chlorofylu(porfyrinový kruhový systém-uprostřed atom Mg- sestavený ze 4pyrrolových kruhů).V závislosti na množství N jsou syntetizovány jiné proteiny. |
|
P (fosfor) | H2PO4-,HPO42- | 10x více se přijímá H2PO4-(při nižším pH) než HPO42-(vyšší pH).Zásadní je role energetická ATP-ADP,strukturální v koenzymech,nukleových kyselinách,nukleotidech,fosfolipidech,fosfoproteinech i P cukrech.Současný přísun P a NH4NO3 – podpora růstu kořenů.Dostatek P koreluje s časností dozrávání. | |
K (draslík) | K+ | Na rozdíl od jiných prvků se nezabudovává do sloučenin,ale hraje roli jako katalyzátor a součást iontových pump.Přes 60 enzymů potřebuje K jako aktivátor.50% K je soustředěno do chloroplastů-důležité pro produkci ATP.Dále ovlivňuje vstřebávání dusíku,syntézu proteinů a škrobů.Důležitý pro Rhizobie – symbiotické fixace dusíku.K redukuje poškození od hub,hmyzu,zlepšuje zdraví rostlin. | |
Mg (hořčík) | Mg2+ | Minerální složka chlorofylu,strukturální komponent ribosomů.Aktivuje polypeptidové řetězce aminokyselin.Dostatek Mg je požadován pro maximální efektivitu fosforyláz,transfer fosforečnanu z ATP(chelátuje s ním).Spolu se S zvyšuje obsah olejnatých látek v rostlinách.Aktivuje RuDP karboxylázu v chloroplastech. | |
Zn (zinek) | Zn2+ nebo chelát | Důležitou úlohu hraje zinek při regulaci metabolismu nukleových kyselin.Zinek je napojen na metabolismus aminokyselin a bílkovin. Zinek je nezbytný jako aktivátor při tvorbě tryptofanu. Vzhledem k tomu, že zinek ovlivňuje tvorbu tryptofanu nepřímo ovlivňuje i tvorbu indolových auxinů(přirozených růstových stimulátorů v rostlině). |
|
Imobilní prvky- Nedostatek se projevuje na vrchních (nových) listech.Nedostatek nelze vykrýt ze starých částí rostliny. |
|||
S (síra) | SO42- | Nutná pro syntézu aminokyselin obsahujících S (cystin,cystein,methionin,které jsou esenciální složkou proteinů).Můstky –s-s slouží jako vazby mezi polypeptidovými řetězci (dvě systeinové molekuly tvoří cystin).-SH má katalytickou funkci v enzymech.Zvyšuje tvorbu oleje a látek odpovědných za chuť. | |
Ca (vápník) | Ca2+ | Zpevňuje buněčné stěny a ovlivňuje celistvost pletiv.Hraje roli v propustnosti buněčných membrán. | |
Fe (železo) | ideálně Fe3+ chelát | Většina přijatého železa se soustřeďuje do chloroplastů, kde dosahuje až 90% celkového Fe listu. Zde je chelátově vázané v porfyrinové struktuře hemu nebo heminu. | |
Mn (mangan) | Mn2+ nebo chelát | V biochemických funkcích je podobný hořčíku, aktivuje některé enzymy,kde může být nahrazen hořčíkem. Mangan hraje důležitou úlohu při oxidaci auxinu - růstového stimulátoru. | |
Cl (chór) | Cl- | Přebytek může u chlorcitlivých rostlin vést k výraznému snížení výnosu.Při nadměrném hnojení chlórem se ztrácí z listů chlorofyl, přičemž zvláště okraje listů jsou chlorotické a svinují se. Na listech vznikají v okolí nervů a na okrajích nekrózy.Neobjevuje se u pravých metabolitů rostliny.Je uložen v biochemicky inertních zásobách.Jeho funkce spočívá v plnění osmotické a kation neutralizační role. | |
B (bór) | nedisociovaná H3BO3 | Bór hraje zásadní roli při vytváření nových buněk z rostlinného meristemu. | |
Cu (měď) | Cu2+ nebo chelát | Měď plní v rostlině funkci katalytického prvku, kde se bezprostředně váže na molekulu bílkoviny. Dále je složkou proteinu v chloroplastu, kterým je zabezpečován transport elektronů.I když měď je biogenním prvkem pro rostliny, je u ní často pozorována rovněž vysoká toxicita. Toxicita je způsobena snadným vstupem jejího iontu do buňky.JUNGLE indabox proto obsahuje Cu ve formě chelátu! | |
Mo (molybden) | MoO42- | Molybden má mimořádně vysokou fyziologickou účinnost.Zásadní je význam molybdenu při redukci nitrátů aktivací nitrátreduktázy při syntéze bílkovin. Funguje jako nosič elektronů. | |
Na (sodík) | Na+ |
Zvyšuje aktivitu enzymu fosfoenolpyruvátové karboxylázy-primárního karboxylujícího enzymu C4 fotosyntézy. Nedostatek Na vede ke změně dráhy CO2 fixace z C4 na C3 (dvojitý pokles). |